Resurgence of the Euler-MacLaurin summation formula
نویسندگان
چکیده
منابع مشابه
Resurgence of the Euler-MacLaurin summation formula
Abstract. The Euler-MacLaurin summation formula relates a sum of a function to a corresponding integral, with a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Pla...
متن کاملAn Euler-Maclaurin-like summation formula for Simpson’s rule
where n is even, h = (b − a)/n, xi = a + ih, and ξ ∈ (a, b). We usually derive (1) using Lagrange polynomials or making the formula exact for f(x) = 1, x, x. A standard exercise for a numerical analysis class is to use the composite Simpson’s rule to approximate an integral with n equal to successive powers of two, and verify that (as long as the fourth derivative of f is well behaved) the erro...
متن کاملEuler - Maclaurin Formula
a Bk({1− t}) k! f (t)dt where a and b are arbitrary real numbers with difference b − a being a positive integer number, Bn and bn are Bernoulli polynomials and numbers, respectively, and k is any positive integer. The condition we impose on the real function f is that it should have continuous k-th derivative. The symbol {x} for a real number x denotes the fractional part of x. Proof of this th...
متن کاملEuler–Maclaurin summation and Schlömilch series
A method for analysing a class of divergent series is developed from the Euler– Maclaurin summation formula. The conditions that the summand must satisfy are explored, and a significant simplification is obtained for cases where the summation ranges over all integers. As an example, we consider the Ewald representation for Schlömilch series, and show that this includes Twersky’s dual series for...
متن کاملAsymptotic Euler-Maclaurin formula for Delzant polytopes
Formulas for the Riemann sums over lattice polytopes determined by the lattice points in the polytopes are often called Euler-Maclaurin formulas. An asymptotic Euler-Maclaurin formula, by which we mean an asymptotic expansion formula for Riemann sums over lattice polytopes, was first obtained by Guillemin-Sternberg [GS]. Then, the problem is to find a concrete formula for the each term of the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2008
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2373